
NPSCS-91-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A235 448

S AY 0 2199133

CLUSTERING, CONCURRENCY CONTROL, CRASH
RECOVERY, GARBAGE COLLECTION, and SECURITY in

OBJECT-ORIENTED DATABASE MANAGEMENT
SYSTEMS

Everton G. de Paula, Captain, Brazilian AF
Michael L. Nelson, Major, USAF

February 1991

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Department of Computer Science, Code CS
Monterey, California 93943-5100

.. - ' -. 1. . " '
. .1 0

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate
School Research Council.

Reproduction of all or part of this report is authorized.

MICHAEL L. NELSON
Assistant Professor
of Computer Science

Reviewed by: Released by:

RbBERT B. MCGHEE PAUL A MARTO
Chairman Dean of Research
Department of Computer Science

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OM No. 07040188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE IS UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-91-008

6a. NAME OF PERFORMING ORGAJIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Dept. of Computer Science (If applicable)

Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Naval Postgraduate School CS OM&N Direct Funding
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. INO. NO. ACCESSION NO.Monterey, CA 93943

11. TITLE (Include Security Classification)
Clustering, Concurrency Control, Crash Recovery, Garbage Collection, and Security in
Object-Oriented Database Management Systems (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Everton G. de Paula and Michael L. Nelson
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Summary FROM TO _ _114TO 91 _Fb 25 19
16. SUPPLEMEP' ARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Object-Oriented Database Management Systems, Clustering,

Concurrency Control, Crash Recovery, Garbage Collection,

Security
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper presents considerations about several topics that have a direct influence on
data reliability and performance in object-oriented database management systems. These
topics are: physical storage management (clustering), concurrency control, crash
recovery, garbage collection, and database security. Each topic is illustrated by its
application to the Tactical Database as designed for the Low Cost Combat Direction
System.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

['XJNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Michael L. Nelson (408) 646-2449 1 CSNe

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED

TABLE OF CONTENTS

1 INTRODUCTION 1

2 OBJECT CLUSTERING 1

2.1 ANALYSIS OF THE OODBMS CLUSTERING FACILITIES 2

2.2 STORING INSTANCES OF THE SAME CLASS IN SEPARATE CLUSTERS . . 2

2.3 CLUSTERING INSTANCES OF A CLASS TOGETHER 3

2.4 CLUSTERING INSTANCES OF A COMPONENT CLASS 3

2.5 CLUSTERING COMPONENTS OF A COMPOSITE CLASS 3

2.6 CLUSTERING ABSTRACT CLASSES 3

2.7 ADDITIONAL CONSIDERATIONS FOR CLUSTERING 3

2.8 CLUSTERING IN THE TACTICAL DATABASE 4

2.8.1 CLUSTERING OF COMPOSITE CLASSES 4

2.8.2 CLUSTERING OF CLASSES THAT ARE USED TOGETHER 4

2.8.3 CLUSTERING OF THE OTHER CLASSES 5

3 CONCURRENCY CONTROL 5

3.1 CONCURRENCY CONTROL MECHANISMS 6

3.1.1 OPTIMISTIC CONCURRENCY CONTROL 6

3.1.2 PESSIMISTIC CONCURRENCY CONTROL 6

3.1.3 OPTIMISTIC vs PESSIMISTIC CONCURRENCY CONTROL 7

3.2 OODBMS CONCURRENCY CONTROL 8

3.3 CONCURRENCY CONTROL IN THE TACTICAL DATABASE 9

4 CRASH RECOVERY 10

4.1 OODBMS RECOVERY 10

4.2 RECOVERY IN THE TACTICAL DATABASE 10

5 GARBAGE COLLECTION 10

5.1 GARBAGE COLLECTION IN THE TACTICAL DATABASE 11 i

6 DATABASE SECURITY 11 i

6.1 OODBMS SECURITY 12 6

6.1.1 LOGIN AUTHORIZATION 12

6.1.2 NAME HIDING 12
r

6.1.3 PROCEDURAL PROTECTION 13

6.1.4 NONPROCEDURAL PROTECTION 13 0
6.2 SECURITY IN THE TACTICAL DATABASE 13 0

7 CONCLUSIONS 13

REFERENCES 14
/

INITIAL DISTRIBUTION LIST 15
Y Codes

- pand/or

I INTRODUCTION

Object-oriented database management systems (OODBMS) are still a
relatively new area, with many unanswered questions as to their use and
performance. In this paper (which we call "OODBMS Topics", for short),
we present information on several issues pertaining specifically to
OODBMSs: clustering (how to organize the objects on disk), concurrency
control (how to manage simultaneous use of the objects by various users),
crash recovery (from both soft (software) and hard (hardware) crashes),
garbage collection (how/when to reorganize main memory as objects move
between main memory and disk), and security (how to control access to the
various objects stored in the OODBMS).

Although this might seem to make for a rather lengthy report of
several unrelated subjects, each section is actually fairly short. And,
to effectively manage an OODBMS, all of these topics must be considered.
Though all examples given herein are from the Tactical Database (TDB) of
the Low Cost Combat Direction System (LCCDS) [dePa90, SS90], we have
generalized the concepts so that they can be applied to virtually any
OODBMS application.' Also, since preliminary studies have indicated that
the GemStone OODBMS [BMOP89, Serv89] is the system of choice for the
LCCDS [Ross89], special emphasis will be given to this particular system.

2 OBJECT CLUSTERING

The way in which objects are stored on disk affects the overall per-
formance of the system. In general, when objects which are often used
together are clustered together on disk (i.e., placed in contiguous
storage areas), overall retrieval time is reduced.

In order to determine how the objects should be clustered on disk, the

following guidelines are proposed:

Analyze the clustering facilities provided by the OODBMS being used.

Determine whether or not instances of the same class can be stored
in separate clusters.

Place all instances of a class that is not a component of several
composite classes in the same cluster, if possible.

Do not cluster together instances of a class which is used as a com-
ponent of several composite classes, if possible.

Place all components of a composite class in the same cluster, if
possible.

Cluster only concrete classes.

The guidelines for object clustering proposed in this paper are based
on the principle that objects which are often used together should be
clustered together on disk. However, it should be remembered that the
ideal clustering scheme will vary depending on the type of queries most
often posed to the database.

'It should be realized that while the LCCDS TDB is used for examples,
some of the issues involved have been simplified; the purpose of this
paper is to present various OODBMS topics, not the LCCDS TDB itself. For
more exact information on the LCCDS TDB, refer to [dePa90].

1

2.1 ANALYSIS OF THE OODDMS CLUSTERING FACILITIES

The physical storage of objects on disk depends on the actual OODBMS
being used. Different systems use different default clustering mecha-
nisms. Additionally, they may or may not allow user-defined clustering.

In ONTOS [Onto90], all elements (components) of an object are stored
together so that they can be retrieved efficiently. Additionally,
related objects can be clustered together on disk in any arbitrary,
programmer-defined grouping. Therefore, objects may be clustered
according to anticipated application usage(s).

Clustering objects together means storing them in the same segment.
Segments are variable-sized atomic units of transfer between secondary
storage and main memory [Onto88]. Whenever one of the objects is
accessed from disk and brought into main memory, all objects in that
cluster are also brought into main memory. Subsequent access to any
other object in that segment is then a main memory access rather than a
disk access. Thus, when done properly, clustering can be used to great
advantage in application performance.

In ORION [BCGK87, KBCG89], all instances of a class are placed in the
same segment. Thus a class is associated with a single segment and all
of its instances reside therein. The user does not have to be aware of
segments as ORION automatically allocates a separate segment for each
class. However, for clustering composite objects it is often necessary
to store instances of several classes in the same segment. The user must
specify which classes should be stored together in the same segment.

One of the original goals of GemStone was that the system would
provide features for managing the placement of objects on disk. The
database administrator, or an application programmer, should be able to
specify how certain objects should be clustered on the disk. GemStone
provides two clustering methods: one basic and another that is more
sophisticated.

The basic clustering method simply assigns each class to a disk page.
It does not attempt to cluster the class' instance variables. If the
user wishes to cluster the instance variables of an object, a special
method must be defined to do so, using the basic clustering method as a
tool.

The more sophisticated method does a depth-first traversal of the tree
representing the instance variables of the instances of a class. That
is, it writes to the disk the object's first instance variable, then the
first instance variable of that variable, then the first instance vari-
able of that variable, and so on, to the bottom of the tree. It then
backs up and visits the variables which it missed before, repeating the
process until the entire tree has been stored. [Serv89]

2.2 STORING INSTANCES OF THE SAME CLASS IN SEPARATE CLUSTERS

If the system permits instances of the same class to be stored in
different clusters, then the user has complete freedom in deciding how
to cluster them. In this case, all components of a composite object can
be stored together. However, if the system requires that all instances
of a class be stored together in the same cluster (i.e., if instances of
a class cannot be stored in separate clusters), then the user is limited
to creating only clusters of classes.

2

.2.3 CLUSTERING INSTANCES OF A CLASS TOGETHER

Placing all instances of a class in the same cluster allows the
retrieval of all the instances of that class in a single disk access.
However, if a class has a large number of instances, the cluster may
become too large (possibly even larger than main memory) to be effi-
ciently read into main memory. In this case, the only solution is to
store the instances in more than one cluster.

2.4 CLUSTERING INSTANCES OF COMPONENT CLASSES

When a class is a component of several composite classes, the number
of classes to be stored together may become too large to be handled
efficiently by the system. If the system permits, one solution to this
problem is to not cluster the instances of the component class together.
Instead, the clustering is done in such a way that each of the instances
of the component class is stored along with its corresponding composite
object.

2.5 CLUSTERING COMPONENTS OF A COMPOSITE CLASS

Ideally, all of the components of a composite object should be stored
together [BCGK87]. However, if a class has several component classes,
then a cluster including all of these classes might be too large to be
handled efficiently by the system.

2.6 CLUSTERING ABSTRACT CLASSES

Concrete classes may have a large number of instances. Besides the
space necessary for their class definitions, they may require a large
amount of storage space for their instances. Abstract classes, on the
other hand, have no instances. Therefore, the only storage space
occupied by these classes is the space necessary to store their class
definitions.

The primary purpose of clustering objects together on disk is to
reduce the amount of time required to retrieve information. This
information is contained (stored) in the instances of the class, not in
the class definition itself. Therefore, it is not necessary to cluster
abstract classes.

2.7 ADDITIONAL CONSIDERATIONS FOR CLUSTERING

Some additional considerations or options for placement of objects on
disk are as follows [HZ87]:

One object per segment is intended for very large objects, since they
are costly to transfer and tend to be accessed individually.

Partitioning based on property values is similar to indexing. In
using properties, specific values, such as "green", or numeric inter-
vals, such as 0 < n < 9, may be specified. This method allows the
user to separate objects containing a property value of particular
interest into one segment. Notice, however, that changing an
object's color from "green" to "blue" may violate the original
specification of a segment whose objects were to have the color
property value of "green". This might require that the object be
moved to another, more appropriate segment.

These methods may also be used to tailor object placement on disk to meet
expected needs [HZ87].

3

2.8 CLUSTERING IN THE TACTICAL DATABASE

2.8.1 CLUSTERING OF COMPOSITE CLASSES

In the TDB, the variable TIME OF POSITION, an instance of the class TIME,
was defined for most of the classes. Consequently, most of the objects
in the TDB are composite objects which have TIME as one of their compo-
nents. In order to store all instances of TIME together with all the
instances of the other classes, it would be necessary to create a cluster
that would include most of the classes defined for the TDB (i.e., most
of the classes would have to be clustered together on disk). The resul-
ting cluster would certainly be much too large to be used efficiently.

Therefore, instances of the class TIME should not be clustered togeth-
er. The clustering should be done in such a way that the instances of
TIME (represented by the variable TIME OF POSITION) are clustered together
with their corresponding composite object.

A similar situation occurs with the classes ANGLE, LATITUDE, LONGI-
TUDE, GEOGRAPHICAL POSITION, DIRECTION, RELATIVE POSITION, CLOSE CPA,
COLLISION CPA, and HMS. Each of these classes is a component class of
several different composite classes. Storing them all togetier along
with their respective composite classes would result in the creation of
large and inefficient clusters. Thus, instances of these classes should
not be clustered together. Rather, they should be clustered along with
their corresponding composite objects.

The classes WIND and MAGNETIC VARIATION, on the other hand, are compo-
nent classes only of the composite class OWNSHIP. Therefore, they should
be clustered together with the class OWNSHIP. Similarly, the classes
DISTANCE RANGE and TIME RANGE are components only of the classes CLOSE
CPA and COLLISION CPA. Therefore, these four classes should be clustered
together. Also, since the class WAYPOINT is a component class only of
the class ROUTE, these two classes should be clustered together.

2.8.2 CLUSTERING OF CLASSES THAT ARE USED TOGETHER

In the TDB scenario, every new track is first classified as a tenta-
tive track and later, after a valid course and speed is established for
it, becomes either an air track, a surface track, or a subsurface track.
Thus, the class TENTATIVE TRACK is often used together with the classes
AIR TRACK, SURFACE TRACK, and SUBSURFACE TRACK. Therefore, these four
classes should be clustered together.

Additionally, all of the tracks' relative positions and closest points
of approach (CPAs) are calculated based on Ownship's geographical posi-
tion. Consequently, the classes TENTATIVE TRACK, AIR TRACK, SURFACE
TRACK, and SUBSURFACE TRACK are generally used together with the class
OWNSHIP. However, this is also true for all special points. That is,
their relative positions and closest points of approach (CPAs) are also
calculated based on Ownship's geographical position. Thus, the classes
REFERENCE POINT, DATA LINK REFERENCE POINT, WAYPOINT, FORMATION CENTER,
NAVIGATION HAZARD, MAN IN WATER, and POSITION AND INTENDED MOVEMENT are
also used together with the class OWNSHIP.

Therefore, there are four main clustering possibilities: cluster OWN-
SHIP with all tracks; cluster OWNSHIP with all special points; cluster
OWNSHIP with both tracks and special points; or do not cluster OWNSHIP
with either.

4

Clustering OWNSHIP with both tracks and special points would result in
a cluster that would probably be too large to be handled efficiently by
the system, since most of the classes defined for the TDB are either
subclasses of the class TRACK or subclasses of the class SPECIAL POINTS.

Although clustering OWNSHIP with all special points or not clustering
OWNSHIP with either tracks or special points are viable alternatives, it
is important to realize that the amount of time to retrieve information
about a track is critical to the safety of the ship - it is necessary to
have all information about a track available as fast as possible. The
fastest way to retrieve information about a track is to cluster the class
OWNSHIP with all tracks (assuming that there are no problems with memory
size).

Therefore, the classes TENTATIVE TRACK, AIR TRACK, SURFACE TRACK,
SUBSURFACE TRACK, and OWNSHIP should all be clustered together on disk.
Remember that the classes WIND and MAGNETIC VARIATION should also be
clustered together with the class OWNSHIP.

2.8.3 CLUSTERING OF THE OTHER CLASSES

The remaining concrete classes are DATA LINK REFERENCE POINT, FOR-
MATION CENTER, MAN IN WATER, NAVIGATION HAZARD, POSITION AND INTENDED
MOVEMENT, REFERENCE POINT, TDB AREA, and USERDEFINED OBJECT. The only
class that is often used together with any of these classes is the class
OWNSHIP. However, it was previously decided that OWNSHIP should be clus-
tered with all the classes that represent tracks.

Thus, there is no strong reason for clustering any of these classes
together. However, it is almost always practical to cluster all of the
instances of a class together. In order to achieve this, the classes
DATA LINK REFERENCE POINT, FORMATION CENTER, MAN IN WATER, NAVIGATION
HAZARD, POSITION AND INTENDED MOVEMENT, REFERENCE POINT, TDB AREA, and
USERDEFINED OBJECT should each be stored in a separate cluster.

3 CONCURRENCY CONTROL

In a database management system (DBMS) which provides concurrent
access to multiple users, each user should see a consistent version of
the data, regardless of now many other users are active or what they are
doing. When a user logs in, the DBMS establishes a logical entity called
a session, which is analogous to an operating system session, job, or
process. A separate session is created each time a user logs in, and the
DBMS monitors, serves, and protects each session independently.

In general, the DBMS prevents inconsistencies by encapsulating the
operations of each session into units called transactions. The opera-
tions that make up a transaction act on what appears to be a private copy
of the objects. This copy is called a workspace. It is only when the
user tells the DBMS to coimit the current transaction that it tries to
merge the modified objects in the user's workspace with the main shared
object store (i.e., the DBMS).

In general, when the user tells the DBMS to commit a transaction, two
conditions are tested that would indicate conflict with the activities
of other concurrent users:

5

First, it determines whether or not other concurrent sessions have
committed transactions of their own, modifying objects that were
accessed during this user's transaction. If so, then outdated values
may have been used in some computations.

Secondly, it checks for locks (see section 3.1.2) set by other ses-
sions that would indicate their intention to modify objects that this
user has already read or to read objects that this user has already
modified. The presence of such locks would mean that committing the
changes might invalidate another user's work.

If neither of these conditions holds, then the transaction is commit-
ted. This not only makes any new and/or modified objects visible to
others as a permanent part of the shared database, but also makes visible
to this user any new/modified objects that have been committed by others.

If, on the other hand, the system finds a conflict, then it refuses to
commit the modifications. When a transaction fails to commit, it leaves
the user's workspace intact with all of the new and modified objects
which it contains. The user can then abort the transaction and start a
new one. This discards all of the new objects and modifications from the
aborted transaction. Depending on the activities of other users, the
user may then be able to repeat the operations using the new values from
the database and commit the new transaction without encountering any
conflicts.

It should be realized that the process of committing a transaction is
an "all-or-nothing" method of posting the user's updates to the main
object store. The system either commits all of the modifications encap-
sulated in a transaction at once, or it commits none of them. Because
of this property, transactions are said to be atomic (i.e., treated as
a single, indivisible operation by the computer). All permanent object
modifications are encapsulated in transactions and are therefore atomic.
The system moves from one internally consistent state to another as users
commit their changes, and no inconsistent data can be introduced as a
result of concurrent changes that conflict with one another. One can
think of the entire set of operations encapsulated within a transaction
as occurring in the instant when the transaction is committed.

3.1 CONCURRENCY CONTROL MECHANISMS

Concurrency control mechanisms can be categorized into two main
approaches: they either prevent conflicting actions during transaction
execution (pessimistic concurrency control); or they discard conflicting
updates when a transaction attempts to commit (optimistic concurrency
control) [BMOP89].

3.1.1 OPTIMISTIC CONCURRENCY CONTROL

In the optimistic approach, users simply read and write objects at
will as if they were the only user. The system searches for and detects
conflicts with other sessions only at the time that the user tries to
commit the transaction. Although relatively easy to implement, this
mechanism entails the risk that the user will lose all of the work that
was done if conflicts are detected and the transaction is aborted.

3.1.2 PESSIMISTIC CONCURRENCY CONTROL

In the pessimistic mechanism, there are two main techniques: one based
on locks, the other based on timestamps.

6

A lock is a variable associated with an object in the database which
describes the status of that object with respect to the possible opera-
tions that can be applied to it. Generally, there is a separate lock for
each object in the database. Locks are used as a means of synchronizing
the access of concurrent transactions to the database.

Using this technique, users act as early as possible to detect and
prevent conflicts by explicitly requesting locks which signal their
intention to read or write objects. If a user succeeds in locking an
object, then other users will be unable to use the object in a way that
would conflict with the locking user's purposes. If a user is unable to
acquire a lock, then someone else has already locked the object. There-
fore the user requesting the lock cannot use the object and then commit.
The user can then abort the transaction immediately, rather than wasting
time on work that cannot be committed. [Serv89]

A timestanm is a unique identifier created by the DBMS to identify a
transaction. Typically, timestamps are assigned when transactions are
submitted to the DBMS, so a timestamp can be thought of as "transaction
start time". Transactions can therefore be ordered according to their
timestamps to ensure serializability [EN89].

Timestamps can be generated in several ways. One possibility is to
have a counter that is incremented each time its value is assigned to a
transaction. In this scheme, the transaction timestamps are numbered
1,2,3,... Since a computer counter has a finite maximum value, the system
must periodically reset the counter to zero (possibly when no transac-
tions are executing for some short period of time). Another way to
implement timestamps which avoids this reset problem is to use the
current value of the system clock. [EN891

Since timestamps are automatically created by the DBMS, the user has
little or no control over them. In the locking mechanism, however, it
is up to the user whether or not to request a lock on an object. Thus
the user is able to exert some control over concurrency when using this
mechanism. Consequently, in further discussions of pessimistic concur-
rency control, emphasis will be given to locking mechanisms.

3.1.3 OPTIMISTIC vs PESSIMISTIC CONCURRENCY CONTROL

Optimistic concurrency control is the most efficient mode of operation
if [Serv89]:

The user is not sharing data with other sessions; or

The user is only reading data (i.e., not writing); or

The user is writing a limited amount of shared data and can tolerate
not being able to commit work some of the time.

In the optimistic mode, the system only looks for conflicts at commit
time. Therefore the probability of a user being in conflict with others
increases with the amount of time between commits and with the size of
the user's read set (i.e., with the number of objects that are read).

Controlling concurrent access with locks (pessimistic concurrency
control) is the most efficient mode of operation if [Serv89]:

There is a lot of competition for shared data in the user's
application; or

The user cannot tolerate even an occasional inability to commit.

7

It is important to keep in mind that the locking mechanism improves
one user's chances of committing only at the expense of others. Thus,
locks should be used sparingly to prevent an overall degradation of
system performance.

3.2 OODBMS CONCURRENCY CONTROL

The EXODUS [CDRS89] and ORION systems both use a locking technique
(pessimistic approach) for concurrency control. In particular, ORION
provides a mechanism that allows the locking of a composite object along
with all of its component objects as a single unit. The AVANCE object
management system [BH89] uses the timestamp model (pessimistic approach)
for concurrency control. The Vbase [Onto88], ONTOS, and GemStone systems
all provide both pessimistic and optimistic concurrency control.

The default mechanism in GemStone is optimistic concurrency control.
That is, this mechanism is always in effect for objects which the user
has not explicitly locked. A transaction that fails to commit leaves the
user's workspace intact with all of the new and modified objects which
it contains. The user may then either take some action to save the
values of those objects in a file outside of GemStone, or abort the
transaction altogether. [Serv89]

In the pessimistic concurrency control mode, three kinds of locks are
provided: read, write, and exclusive. A session may hold only one kind
of lock on an object at a time.

Holding a read lock on an object means that computations can be made
based on the object's value and then committed without fear that some
other transaction might have committed a new value for that object after
the read lock was obtained. Another way of saying this is that holding
a read lock on an object guarantees that other sessions cannot:

Acquire a write or exclusive lock on the object; or

Commit if they have written the object.

Multiple sessions may hold read locks on the same object. Therefore,
read locks are also known as shared locks.

Holding a write lock on an object guarantees that the user can write
the object and commit. That is, it ensures that the user will not find
that someone else has prevented them from committing by writing the
object and committing it before them during the transaction. Alterna-
tively, it can be said that holding a write lock on an object guarantees
that other sessions cannot:

Acquire any kind of lock on the object; or

Commit if they have written the object.

Write locks differ from read locks in that only one session may hold
a write lock on an object. In fact, if a session holds a write lock on
an object, then no other session may hold any kind of lock on the object.
This prevents other sessions from receiving the assurance implied by a
read lock that the value of the object in its workspace will not be
outdated when it attempts to commit. Other sessions may, however, still
read the object without acquiring any type of lock of their own.

An exc-usive lock is like a write lock in that it guarantees the
user's ability to write an object. However, it goes beyond a write lock
by guaranteeing that other sessions cannot:

8

Acquire any kind of lock on the object; or

Commit if they have read or written the object.

GemStone's exclusive locks correspond to what traditional DBMSs call
exclusive locks or sometimes just write locks. By contrast, GemStone's
write locks are not exclusive in the conventional sense, as other ses-
sions may still be able to commit after reading a write-locked object
optimistically (i.e., without holding a lock).

In addition to the locks for single objects, GemStone also allows
locks on collections of objects.

3.3 CONCURRENCY CONTROL IN THE TACTICAL DATABASE

The TDB will interact with four external interfaces: the Radar System
(sensors interface), the Link 12 System (data link interface), the Navi-
gation System (navigation interface), and the user or LCCDS operator
(man-machine interface) [dePa90, SS90]. Data will be written to the TDB
through these four external interfaces, but only the user (through the
man-machine interface) will be allowed to read data from the TDB.

Additionally, some updates to the TDB will occur internally. That is,
the system will automatically read data from the TDB, perform various
calculations (for example, dead reckoning or waypoint maneuvering geome-
tries) and then write the results back to the TDB.

Ownship position and velocity, waypoint maneuvering geometries, and
track data are updated at least every four seconds. Also, the system
shall automatically perform dead reckoning computations for all tracks
if no update is received within a four second period of time. [SS90]

To meet these requirements, all automatic operations performed by the
system will have to be short duration transactions (at most four sec-
onds). For short duration transactions, the optimistic concurrency
control technique is the most efficient approach.

Therefore, it is recommended that optimistic concurrency control be
used for all automatic updates (either Local Auto or Remote) performed
by the Tracking, Data Link, and Navigation Systems. If a transaction
(update) fails to commit, it is recommended that the transaction be
aborted (discarding the data), because the next update, with new data,
will occur within the next four seconds.

On the other hand, updates performed manually by the user (in the
Local Manual mode) will most likely take longer than four seconds and
will therefore require locks of some type. Otherwise they would have
little chance to commit as the automatic updates would almost certainly
commit first.

It is therefore r.commended that pessimistic concurrency control be
used for all updates performed by the user (Local Manual updates). Once
the user acquires a lock on an object, the transaction is then guaranteed
to commit.

Transactions involving schema modification (i.e., changes to the defi-
nition of a class) will also require pessimistic concurrency control.
To avoid inconsistencies in such cases, it is recommended that the user
obtain exclusive locks not only on the classes being modified, but also
on all of their descendant classes.

9

4 CRASH RECOVERY

Transaction recovery is concerned with the preservation of the atomic
property of transactions. This means that, ideally, despite all possible
failures of the computer system, all updates of every committed transac-
tion will be stored in the database, and no update of any aborted trans-
action will be stored in the database. Of course, no system can support
transaction recovery against all possible failures, which may include
simultaneous failures of processor(s), main memory, secondary memory, and
communication medium between processors. Most commercial DBMSs support
recovery from soft crashes (which leave the contents of the disk intact)
and from hard crashes (which destroy the contents of a disk). [KBCG89]

4.1 OODBMS RECOVERY

In ORION, ONTOS, Vbase, and GemStone, as well as most multi-user
systems, the unit of recovery from soft crashes is the transaction. This
means that changes made by committed transactions are kept, and changes
not yet committed are lost.

To guard against hard crashes, GemStone and Vbase allow the user to
create backup copies of the database. However, in Vbase the backup copy
of the database is immutable; it can be deleted or replaced, but not
modified [Onto88]. In GemStone, on the other hand, replicates of the
database can be created. The system copies all objects from the file
that contains the database to a new file, and afterward stores newly-
committed objects in both files. Subsequent damage to one file leaves
objects in the other one intact, allowing the system to continue to
function normally with no loss of data. Only authorized users are
allowed to create database replicates. GemStone allows the creation of
up to 6 replicates. Of course, maintaining replicates of the database
on line has a cost in both time and space.

4.2 RECOVERY IN THE TACTICAL DATABASE

Soft crashes in the TDB could result in the loss of data not yet
committed to the database. Since most transactions in the TDB are of
short duration (automatic transactions are expected to take less than
four seconds, while manual transactions, in general, take just a few
minutes), only recent information will be lost. Therefore, unless the
soft crash is caused by hardware failure (which could cause the system
to be "down" for a considerable amount of time), the database can be
rapidly updated with new information.

Since GemStone allows authorized users to create replicates of the
database, at least one backup copy (replicate) of the database should be
kept on disk (preferably on a separate disk). This will greatly reduce
the chances of losing data due to hard crashes.

5 GARBAGE COLLECTION

Each time a transaction commits, memory locations containing the old
version of any modified data become unusable (and usually inaccessible
as well). These locations are then considered to be "garbag 3" as they
are not part of free space but do not contain usable information either.

Periodically, it is necessary to find all the garbage locations and
add them to the list of free space. This process is called garbage

10

collection, which of course imposes additional overhead and complexity

on the system. [KS86]

5.1 GARBAGE COLLECTION IN THE TACTICAL DATABASE

In GemStone, garbage collection is executed in single-user mode and
can only be performed by authorized users. Since all qualified LCCDS
operators should be capable of fully operating the system, they should
all be authorized to perform periodic garbage collection.

The frequency in which garbage collection should be performed will
depend, in general, on the number of objects modified or deleted during
LCCDS operation. Since garbage collection may be a relatively long
process requiring that no interfaces be logged in to the database, it is
recommended that it be performed only in situations of low risk to the
ship or when absolutely necessary (e.g., if performance should become
severely degraded due to lack of free space).

6 DATABASE SECURITY

Data stored in a database needs to be protected from unauthorized
access, malicious destruction or alteration, and accidental introduction
of inconsistency. The term database security usually refers to security
from malicious access, while database integrity refers to the avoidance
of accidental loss of consistency [KS86] . Accidental loss of consistency
may result from [KS86]:

Crashes during transaction processing.

Anomalies due to concurrent access to the database.

Anomalies due to the distribution of data over several computers.

A logical error which violates the assumption that transactions
preserve database consistency constraints.

The techniques of recovery and concurrency control are useful in pro-
tecting the database against accidental loss of consistency. It is
generally easier to protect against loss of data consistency than to
protect against malicious access, which includes the following [KS86]:

Unauthorized reading of data (theft of information).

Unauthorized modification of data.

Unauthorized destruction of data.

Absolute protection from malicious abuse is not possible. However,
the cost to the perpetrator can be made sufficiently high to deter most,
if not all, attempts to access the data without proper authority [KS86].

Therefore, in order to protect the database, security measures must be
taken at several levels [KS86]:

Physical: The site or sites containing the computer systems must be
physically secured against armed or surreptitious entry of intruders.

Human: Authorization of users must be done carefully to reduce the
chance of an authorized user giving access to an intruder in exchange
for a bribe or other favors.
Operating system: No matter how secure the DBMS is, weaknesses in
operating system security could serve as a means of unauthorized

11

access to the database. Since almost all DBMSs allow remote access
through terminals or networks, software-level security within the
operating system is as important as physical security.

DBES: Various restrictions on data stored in the database are pos-
sible. For example, some users could be authorized to access only
a limited portion of the database while others could be allowed to
issue queries, but forbidden to make modifications. The DBMS is
responsible for enforcing restrictions such as these.

It is generally worthwhile to devote a considerable effort to the
preservation of the integrity and security of the database. Loss of
data, whether via accident of fraud, may seriously impair the ability of
a "corporation" to function or, in the case of the TDB, could result in
severe or catastrophic consequences.

6.1 OODBMS SECURITY

The System Documentation Manuals of Vbase [Onto88] and ONTOS [Onto9O]
do not mention security mechanisms. This suggests that these systems do
not provide any mechanisms to avoid malicious access to the database.

GemStone, however, provides the following kinds of security mechanisms
to help control access to sensitive code and data: login authorization,
name hiding, procedural protection, and nonprocedural protection (author-
ization and privileges). The user may choose to employ any or all of
these mechanisms.

6.1.1 LOGIN AUTHORIZATION

Login authorization provides GemStone's first line of protection.
"Logging in" is the process of establishing a logical connection with
GemStone that permits further interaction. It is analogous to logging
in to a timeshared operating system. The GemStone system administrator,
or someone with equivalent privileges, establishes user ID's and pass-
words for authorized users. [Serv89]

6.1.2 NAME HIDING

The system administrator assigns to each user a symbol list, which
contains the names of all the system-defined objects that the user will
be allowed to access. Although the decision about which objects to
include is entirely up to the system administrator, the user's symbol
list typically contains [Serv89]:

A system dictionary which contains some or all of the system-defined
classes, and any other objects that all GemStone users have access
to. Although users can read the objects in this dictionary, they are
generally not permitted to modify them.

A private dictionary for user-defined objects that are not to be
shared with other users.

One or more special-purpose dictionaries which can be shared.

It can be difficult, or even impossible, for users to refer to global
objects that are not in their symbol list. Consequently, just omitting
objects which are to be "off-limits" to a user from their symbol list
provides a certain amount of security. However, determined users may
still find ways to circumvent this, since it is difficult to ensure that
all indirect paths to an object are eliminated. [Serv89]

12

6.1.3 PROCEDURAL PROTECTION

If the user's program accesses objects only via methods, the use of
objects can be controlled by including user identity checks within their
methods. Obviously, this kind of checking on a large scale would require
a fair amount of code, and, consequently, might be troublesome to main-
tain and update. (Serv89]

6.1.4 NONPROCEDURAL PROTECTION

GemStone provides two global mechanisms which are nonprocedural:
authorization and privileges [Serv89]. The authorization mechanism pro-
tects objects from access by unauthorized users (i.e., those users who
have not been explicitly given permission to access the object). Every
user cin utilize the authorization mechanism to protect both data and
code c jects on a selective basis.

GemStone enables the user to endow both other users and objects with
authorization attributes. Whenever a program tries to read or write an
object, GemStone compares the object's authorization attributes with
those of the user whose program is attempting to do the access. If the
two share the appropriate attributes, then the operation may proceed.
If not, GemStone returns an error notification.

The authorization mechanism also allows the user to authorize reading
an object without giving authority to write it. Authorizations are easy
to change, and no extra code is required in the objects being protected.

The privilege mechanism, which is entirely independent of the authori-
zation system, enables the system administrator to control who can send
certain powerful messages, such halting the system or changing passwords.
Privileges are associated with only a few such methods, and the mechanism
cannot be extended to control other methods.

Thus, while authorization can be used to control access to any object,
the privilege mechanism guards a small but crucial set of methods. The
system administrator determines who shall be privileged to invoke each
of a small group of messages which, together, exert "life-and-death"
control over all of the objects and functions in GemStone.

6.2 SECURITY IN THE TACTICAL DATABASE

The TDB will be used in a multi-user form, being shared by the Track
System, Link 11 System, Navigation System, and LCCDS operator (user).
However, since all transactions performed by the Track System, Link 11
System, and Navigation System are automatic (i.e., following a pre-
programmed scheme), the only manual access to the database will be
performed by the LCCDS operator. Since all LCCDS operators should be
capable of fully operating the system in all circumstances, there should
be very little need to control access to sensitive code and data. Thus,
all qualified LCCDS operators should be given "login authorization" as
well as having access to all objects in the TDB (i.e., they should all
have the privileges of a system administrator).

7 CONCLUSIONS

Clustering, concurrency control, crash recovery, garbage collection,
and security all have a direct influence on data reliability and database

13

performance. Data reliability (integrity) is maintained, as much as
possible, by means of the concurrency control, crash recovery, and
security mechanisms. The overall performance of a database is greatly
influenced by the clustering and garbage collection techniques provided
by the OODBMS used.

R4EFERENCES

[BH891 A. Bjornerstedt and C. Hulten. "Version Control in an Object-Oriented
Architecture". In (KL89], pp 451-485.

[BCGK87] J. Banerjee, H-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, and
H-J. Kim. "Data Model Issues for Object-Oriented Applications", ACM Transactions
on Office Information Systems, Vol 5, No 1, Jan 1987, pp 3-26.

[BMOP89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H.
Williams, and M. Williams. "The GemStone Data Management System". In (KL89],
pp 283-308.

[CDRS89] M.J. Carey, D.J. DeWitt, J.E. Richardson, E.J. Shekita. "Storage
Management for Objects in EXODUS". In [KL89), pp 341-369.

[dePa90] E.G. de Paula. A Tactical Database for the Low Cost Combat Direction
System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec 1990.

(EN891 R. Elmasri and S.B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings Publishing Co, Inc, Redwood City, CA, 1989.

(HZ87] M.F. Hornick and S.B. Zdonik. "A Shared, Segmented Memory System for an
Object-Oriented Database", ACM Transactions on Office Information Systems, Vol
5, No 1, Jan 1987, pp 70-95.

[KBCG89] W. Kim, N. Ballou, H-T. Chou, J.F. Garza, and D. Woelk. "Features of
the ORION Object-Oriented Database System". In [KL89], pp 251-282.

[KL89] W. Kim and F.H. Lochovsky, eds. Object-Oriented Concepts, Databases, and
Applications, ACM Press (Addison-Wesley Publishing Co), New York, NY, 1989.

[KS86] M.F. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill,
Inc, San Francisco, CA, 1986.

[Onto88J Ontologic Inc. Vbase Integrated Object Database: System Documentation,
Releases 0.8-1.0. Ontologic Inc, Burlington, MA, 1988.

[Onto9O] Ontologic Inc. ONTOS Object Database Documentation, Release 1.5.
Ontologic Inc, Burlington, MA, 1990.

[Ross89] D.L. Ross. Object-Oriented Database Manager for the Low Cost Combat
Direction System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec
1989.

rServ89] Servio Logic Corp. Programming in OPAL. Servio Logic Corp, Beaverton,
OR, 1989.

[SS90] J. Seveney and G. Steinberg. Requirements Analysis for a Low Cost Combat
Direction System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Jun
1990.

14

DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943 2 copies

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Director of Research Administration
Code 81
Naval Postgraduate School
Monterey, CA 93943 1 copy

Maj M.L. Nelson, USAF
Naval Postgraduate School
Code CS, Dept. of Computer Science
Monterey, CA 93943 5 copies

Professor LuQi
Naval Postgraduate School
Code CS, Dept. of Computer Science
Monterey, CA 93943 5 copies

Capt E.G. de Paula, Brazilian AF
Centro T~cnico Aeroespacial (CTA)
IAE - ESB
SAo Jos6 dos Campos, SP, Brazil, 12225 5 copies

15

